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Abstract: In optically stimulated luminescence (OSL) dating, statistical age models for equivalent 
dose (De) distributions are routinely estimated using the maximum likelihood estimation (MLE) 
method. In this study, a Markov chain Monte Carlo (MCMC) method was used to analyze statistical 
age models, including the central age model (CAM), the minimum age model (MAM), the maximum 
age model (MXAM), etc. This method was first used to obtain sampling distributions on parameters 
of interest in an age model using De distributions from individual sedimentary samples and subse-
quently extended to simultaneously extract age estimates from multiple samples with stratigraphic 
constraints. The MCMC method allows for the use of Bayesian inference to refine chronological se-
quences from multiple samples, including both fully and partially bleached OSL dates. This study de-
signed easily implemented open-source numeric programs to perform MCMC sampling. Measured 
and simulated De distributions are used to validate the reliability of dose (age) estimates obtained by 
this method. Findings from this study demonstrate that estimates obtained by the MCMC method can 
be used to informatively compare results obtained by the MLE method. The application of statistical 
age models to multiple OSL dates with stratigraphic orders using the MCMC method may significant-
ly improve both the precision and accuracy of burial ages. 
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1. INTRODUCTION 

In optically stimulated luminescence (OSL) dating, 
the assessment of certain parameters of interest (i.e., De) 
is essential in estimating sample age. Routinely, a large 
set of aliquots (grains) are analyzed from which a single 

De (i.e., the characteristic De determined using a statisti-
cal model) is ultimately obtained along with its standard 
error estimate. Galbraith and Roberts (2012) reviewed the 
most commonly used statistical age models in determin-
ing the characteristic De, namely, from the simple central 
age model (CAM) (Galbraith et al., 1999) to more so-
phisticated ones, such as the minimum age model 
(MAM) (Galbraith et al., 1999).  Corresponding author: J. Peng 
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Maximum likelihood estimation (MLE), which pro-
vides point estimates of parameters and associated stand-
ard errors, is routinely adopted to estimate parameters 
used in these statistical age models by maximizing the 
logged-likelihood function (Galbraith et al., 1999; Gal-
braith and Roberts, 2012). The burial age is obtained by 
dividing the characteristic De estimated using MLE by the 
average environmental dose rate of the sample, and the 
associated standard error is estimated using propagation 
of error formulas (referred to as the standard approach). 
However, the standard approach only provides a coarse 
characterization of the statistics associated with burial 
age. Moreover, it does not permit the inclusion of addi-
tional information, such as order constraints between the 
ages of a given stratigraphic sequence to improve age 
estimates (Combès and Philippe, 2017). 

In contrast, the Markov chain Monte Carlo (MCMC) 
methods construct a Markov chain while converging to 
the desired sampling distribution by starting from random 
initials and seeking to characterize posterior distributions 
for parameters of interest (Gelman et al., 2014). Further-
more, MCMC methods treat model parameters as full 
probability distributions and produce samples from the 
joint posterior density of parameters that are then summa-
rized for the purpose of Bayesian inference. By doing so, 
the uncertainty over the range of potential parameter 
values is also estimated, rather than only a single point 
estimate (Annis et al., 2017). Summary statistics (such as 
the mean, the median, the standard deviation, the confi-
dence interval, etc.) are obtained directly from randomly 
generated samples.  

Such MCMC methods have increasingly been em-
ployed to analyze OSL data for Bayesian inferences (e.g., 
Millard, 2004; Sivia et al., 2004; Huntriss, 2008; Zink, 
2013, 2015; Peng and Dong, 2014; Combès et al., 2015; 
Cunningham et al., 2015a, 2015b; Guérin et al., 2015; 
Mercier et al., 2016; Peng et al., 2016a; Christophe et al., 
2018; Philippe et al., 2019). For example, Sivia et al. 
(2004) used an MCMC method to analyze the finite mix-
ture age mode (FMM) (Galbraith and Green, 1990; Rob-
erts et al., 2000) as well as a noised FMM using unlogged 
De sets. Cunningham et al. (2015a, 2015b) developed an 
age model to account for effects of variation in aliquot 
size and luminescence sensitivity on partially-bleached 
De distributions while using an MCMC method to obtain 
the posterior of parameter estimates. Combès et al. 
(2015) proposed a hierarchical model to describe the 
central De for fully bleached aliquots (grains). A Metrop-
olis-within-Gibbs sampler is used to obtain the posterior 
of the characteristic dose. The model has been further 
expanded to analyse poorly bleached samples using a 
Gaussian mixture model (e.g., Christophe et al., 2018). 
Peng et al. (2016a) used a Slice-within-Gibbs sampling 
algorithm to obtain the posterior distribution of parame-
ters in statistical age models reviewed by Galbraith and 
Roberts (2012). However, this model did not take into 
account the posterior distribution for burial age.  

The first objective of this study is to estimate statisti-
cal model parameters (such as the CAM, the MAM, etc.) 
and obtain the posterior distribution for burial age 
through MCMC sampling under a Bayesian framework, 
using a combination of aliquot-level (grain-level) dose 
and sample-level dose-rate datasets. The burial dose and 
age estimated by MCMC are then compared with those 
estimated using the standard approach (i.e., MLE). 

Bayesian models utilize stratigraphic relationships be-
tween samples to increase the precision of dates and to 
provide a sophisticated protocol to combine multiple age 
estimates into a meaningful chronological framework 
(Ramsey, 1995, 2008). By incorporating the stratigraphic 
principle that shallower sediments in the stratum se-
quence are younger than deeper sediments into age-depth 
models, Bayesian inference can reduce the uncertainty of 
dates wherein age probability distributions overlap. Age-
depth modelling using Bayesian inference was initially 
developed to analyze radiocarbon dating data (Ramsey, 
1995; Bayliss and Ramsey, 2004). Over the past decade, 
the application of Bayesian inference to model depth-age 
relationships using luminescence data have also gained 
widespread usage (e.g., Rhodes et al., 2003; Cunningham 
and Wallinga, 2012; Lanos and Philippe, 2015; Combès 
and Philippe, 2017; Zeeden et al., 2018; Tamura et al., 
2019).  

During the routine application of statistical age mod-
els, such as the CAM and MAM, characteristic De values 
of individual samples are estimated separately (e.g., 
Schmidt et al., 2012; Arnold et al., 2009), even when 
samples are collected from different depths in the same 
profile sequence (e.g., Arnold et al., 2007; Kunz et al., 
2013; Peng et al., 2016b) and when age-depth relation-
ship between samples may have been used as additional 
information to improve date estimates. Brill et al. (2015) 
applied statistical age models (including CAM and 
MAM) to obtain luminescence age estimates (and associ-
ated standard errors) for samples collected from a number 
of depositional sequences, and they used the age-depth 
modelling program OxCal to improve the accuracy and 
precision of these ages by making use of their relative 
stratigraphic order. However, this two-step protocol that 
consists of calculating burial ages using a standard ap-
proach and further perfect these age estimates using 
Bayesian inference may fail in characterizing distribu-
tions of interest because it decomposes the global infer-
ence into a two-step assessment that is likely to lead to a 
significant loss of information during each step in the 
process (Combès et al., 2015). Cunningham and Wallinga 
(2012) employed a bootstrap likelihood protocol to obtain 
the distribution of the characteristic De for a sequence of 
young fluvial samples using an unlogged version of the 
MAM. The replicate characteristic De values obtained by 
bootstrapping are used to construct a probability density 
function for each sample in order to apply Bayesian in-
ference to improve OSL chronologies. However, as reit-
erated by Cunningham and Wallinga (2012), the boot-
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strap likelihood protocol is just an analogue of the likeli-
hood function and does not produce a true likelihood.  

The second objective of this study is to apply statisti-
cal age models to refine age-depth relationships using De 
datasets from multiple luminescence samples employing 
an alternative Bayesian inference model. In contrast to 
the method by Cunningham and Wallinga (2012), in this 
study characteristic De values are sampled directly from 
the probability density function that describes the statisti-
cal model (see the following section for more detail) 
through MCMC sampling. The joint probability density 
function for multiple OSL ages is constructed by utilizing 
a combination of statistical models and measured De and 
dose rate datasets. Both the CAM and MAM are used to 
flexibly analyze fully and partially bleached OSL dates, 
respectively, using MCMC in order to combine different 
types of statistical age models in a mathematically rigor-
ous, geologically reasonable, and philosophically satisfy-
ing manner. The performance of the model is then tested 
on measured and simulated De distributions. 

2. A BRIEF INTRODUCTION TO GALBRAITH’S 
STATISTICAL AGE MODELS 

The central age model (CAM) 
Galbraith et al. (1999) recommended using the CAM 

to provide a representative estimate of the characteristic 
dose for samples that have not been affected by partial 
bleaching or sediment mixing. The benefit of the CAM is 
that it can take any over-dispersion (OD) into account 
when estimating the weighted mean dose and its standard 
error (Galbraith and Roberts, 2012). OD provides an 
estimate of the degree of dispersion that represents the 
relative spread in the De distribution that remains after 
allowing for measurement uncertainties. Routinely, OD is 
calculated as a descriptive statistic to reveal sources of 
variability in De (e.g., Thomsen et al., 2005; Jacobs et al., 
2006). The OD of De distributions in well-bleached ana-
logues is commonly used as an input for statistical age 
models when analyzing measured sedimentary samples 
(Galbraith and Roberts, 2012). The likelihood function of 
the CAM can be described as follows: 
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where yj and xj represent for the jth logged De value and 
its relative standard error (RSE), respectively. p(Dj|θ) 
represents the probability of data Dj given parameter θ.  
μ and σ represent the parameters of interest (i.e., the 
logged characteristic De and the OD, respectively).  

Optimal parameters can be obtained using either an 
iterative numeric procedure or by direct numerical maxi-
mization of the joint-likelihood determined from paired 
observations D={xj, yj | j=1,2,3,...,n) (Galbraith et al., 
1999). Most free and commercial optimization environ-
ments (such as R, Matlab, etc.) provide well-designed 

optimization routines for optimization usage. The stand-
ard errors of parameters are conventionally obtained by 
inverting the Hessian matrix estimated by finite-
difference approximation. 

The minimum age model (MAM) 
One of the most widely used statistical models for 

tackling partially-bleached samples is the MAM (Gal-
braith et al., 1999; Galbraith and Roberts, 2012), which is 
based on well-established statistical principles. In this 
model, true logged characteristic De value is assumed to 
be drawn from a truncated Normal distribution, and the 
lower truncation point (i.e., γ) represents the mean of the 
logged characteristic dose of fully bleached grains. Two 
versions of the model are available, namely, the  
3-parameter minimum age model (MAM3) and its  
4-parameter counterpart (MAM4). The properties of the 
dataset (i.e., the degree of dispersion, the number of data 
points, the uncertainties associated with De values, etc.) 
may strongly affect the quality of the estimate in the 
application of the MAM4 (Galbraith and Roberts, 2012). 
In contrast, the MAM3 usually works well even for lowly 
dispersed De sets, while also being rather numerically 
stable compared to the MAM4.  

Galbraith et al. (1999) noted that some datasets, par-
ticularly those with small numbers of De values or less 
dispersed distributions, do not warrant fitting with the 
MAM4, and that a more robust estimate of the character-
istic dose may be obtained using the MAM3. Consequent-
ly, the MAM3 is conveniently regarded as the “default” 
model (Arnold et al., 2009) and has been widely applied 
in the literature to determine burial dose (e.g., Arnold et 
al., 2007; Schmidt et al., 2012; Kunz et al., 2013). Ac-
cording to Galbraith et al. (1999), the likelihood function 
of the MAM3 can be described as follows: 
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Three quantities (p, μ, and σ) must be optimized in 
this model. p denotes the proportion of grains that are 
fully bleached before burial, μ denotes the logged charac-
teristic dose, and σ is an adjustable parameter used to 
account for the dispersion in partially bleached grains (in 
unit per cent). Note that, conventionally, the logged char-
acteristic dose in the MAM3 is represented by γ, and in 
this study μ is alternatively used to make it correspond to 
that which is in the CAM. Φ(x) denotes the standard 
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Normal cumulative distribution function. The optimal 
parameters are typically estimated by direct numerical 
maximization of the joint-likelihood that is determined 
using paired observations D={xj, yj | j=1,2,3,...,n). In 
contrast to the CAM, optimization of the MAM3 is con-
sidered an ill-conditioned mathematical problem due to 
the strong nonlinearities in the calculation. Whether it is 
possible to converge it to global optimal estimates de-
pends heavily on the choice of the initial parameters used. 
It is indispensable to try various initial parameter sets to 
obtain optimal estimates. 

The maximum age model (MXAM) 
The maximum age model (MXAM) is an analogue of 

the MAM and is firstly applied by Olley et al. (2006) in 
their estimation of the maximum dose population from De 
distributions. Galbraith and Roberts (2012) enumerated 
two scenarios where the MXAM is applicable: (1) Sam-
ples composed of fully bleached grains that have subse-
quently been mixed with younger, intrusive grains, and 
(2) samples composed of fully bleached grains, some 
proportion of which have been bleached after deposition.  

The characteristic dose of the MXAM3 can be esti-
mated according to the MAM3 by using a “mirror image” 
of the original De distribution as an input (Olley et al., 
2006; Galbraith and Roberts, 2012). Alternatively, by 
accounting for the fact that the lower truncation point of a 
truncated Normal distribution denotes the minimum char-
acteristic dose in the MAM3 while the upper truncation 
point of a truncated Normal distribution denotes the max-
imum characteristic dose in the MXAM3, the likelihood 
for the MXAM3 can be derived by a minor modification 
of Eq. 2.2 and can be described as follows: 
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where μ0 and σ0 are calculated in the same manner as the 
corresponding values in the MAM3. 

Unlogged versions of statistical age models 
Larger De estimate typically have larger absolute 

standard errors; namely, larger De estimates will vary 
more (Arnold and Roberts, 2009). Consequently, the 
frequency distribution of De estimates will tend to be 
positively skewed. The Lognormal distribution provides a 
simple model to describe variables wherein their standard 
deviations increase in proportion to their means. It is for 
this reason that the aforementioned statistical age models 
use log-transformed De datasets as inputs. Datasets in 
log-scale are obtained by calculating natural logarithms 
of De estimates and transforming their absolute standard 
errors into RSEs. This is because the RSE of a De esti-
mate approximates the standard error of a De estimate on 

a natural logarithm scale (Galbraith and Roberts, 2012). 
As a result, these statistical age models are unsuitable for 
measured zero or negative De values that are consistent 
with zero or positive De values within a level of uncer-
tainty. However, such types of De distribution are fre-
quently encountered for either very young or modern 
samples. As a consequence, Arnold et al. (2009) used 
unlogged versions of the CAM and the MAM to analyze 
young/modern De datasets using a series of known-age 
fluvial samples and demonstrated that the unlogged ver-
sions of these models are capable of producing accurate 
burial dose estimates from their samples. To apply un-
logged versions of these models, the user needs only use 
the original De values and their absolute standard errors as 
yjs and xjs, respectively, in Eqs. 2.1–2.3. In this case, the 
estimated μ denotes the characteristic dose (not the 
logged counterpart), while σ denotes a parameter in unit 
Gy (not in per cent). 

3. ANALYZING GALBRAITH’S STATISTICAL 
AGE MODELS USING MCMC 

MCMC sampling from statistical age models for indi-
vidual samples 

The statistical age models described in Section 2 are 
in fact equivalent dose models. This is because they esti-
mate the characteristic De instead of the burial age (e.g., 
Guérin et al., 2017). However, they can be easily trans-
formed to obtain the posterior distribution of ages by 
taking the dose rate data into consideration during the 
simulation process: 

)( εµ +×= da  (3.1) 

where a denotes the age, μ denotes the characteristic 
dose, �̅� denotes the mean annual dose rate, and ε denotes 
a variable that follows Gaussian distribution with mean 0 
and standard deviation σd, namely, ε ~ N(0, σd

2). σd is 
calculated by aggregating many error sources due to 
measurements of uranium, thorium, potassium, water 
contents, etc. (Combès and Philippe, 2017). In this way, μ 
is represented mathematically using Eq. 3.1, and it is 
treated as an intermediate stochastic node during the 
simulation process. Consequently, the model can be re-
parameterized using a instead of μ, namely, θ=[μ, σ] (in 
the CAM) and θ=[p, μ, σ] (in the MAM3 or the MXAM3) 
are re-parameterized as θ=[a, σ] and θ=[p, a, σ], respec-
tively.  

Each parameter is assigned a prior distribution that 
represents the prior knowledge of it before some evidence 
is considered. For p (i.e., the proportion of fully bleached 
grains), a Uniform prior that lies between 0.001 and 
0.999 was used. For a (i.e., burial age) a typically em-
ployed non-informative prior is a Uniform distribution 
with lower and upper bounds set to equal amin and amax, 
which specifies a particular period of the burial history 
(e.g., Combès and Philippe, 2017). Parameter σ (i.e., a 
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scale parameter inside the model) is an adjustable param-
eter that captures the unknown spread within the whole 
De distribution (for the CAM) or only the unknown 
spread in the De distribution for partially bleached grains 
(for the MAM3). A significant amount of variation in OD 
exists between samples that either have different inherent 
luminescent properties, undergo different burial histories, 
and those that have been affected by various factors relat-
ed to variation in microdosimetry and uncertainty from 
the measurement procedure. A summary of OD values 
from sedimentary samples (some are thought to have 
been fully bleached at the time of deposition) in pub-
lished studies reveals that single-grain De distributions 
exhibit OD values of up to 30% (or higher), and the De 
distributions of multi-grain aliquots have a mean OD of 
14% (Arnold and Roberts, 2009). OD values for several 
partially bleached young/modern fluvial samples calcu-
lated using an unlogged CAM range from 24% to 208% 
(Arnold et al., 2009). In this study, the prior of σ was repre-
sented using a Uniform distribution over the interval (0, 5). 

Galbraith and Roberts (2012) reiterated that an esti-
mate of additional uncertainty (σb) should be added in the 
quadrature to the RSE of each De value before running 
the MAM (as well as the MXAM) (Galbraith et al., 
2005). σb represents the underlying spread in dose distri-
bution typically present in well-bleached and undisturbed 
samples. An overestimate of σb will lead to an overesti-
mate of the characteristic dose (and hence the burial age), 
and vice versa. Ideally, σb should be calculated from a 
well-bleached sample of the same mineral derived from 
the same source and, also ideally, of equivalent age (Gal-
braith and Roberts, 2012). In the absence of such infor-
mation, σb values of 10% and 20% could be coarse ap-
proximations at multiple-grain and single-grain levels, 
respectively (e.g., Arnold and Roberts, 2009).  

MCMC sampling from statistical age models for mul-
tiple samples with order constraints 

In this section, an age-depth model to combine De da-
tasets from multiple samples with stratigraphic con-
straints was considered by using the statistical age models 
described in Section 2. Although Bayesian age-depth 
models are expected to improve the precision of dates, 
such precision may be misleading if potential systematic 
uncertainties have not been included by the individual 
samples (Zeeden et al., 2018). Compared to the applica-
tion of statistical age models to individual samples using 
the standard approach, incorporating statistical age mod-
els into a Bayesian age-depth framework to refine the 
age-depth relationship between dates from multiple sam-
ples with order constraints requires that both random and 
systematic sources of errors are properly accounted for; 
otherwise, the precision of dates may increase decisively 
in unjustified ways (Combès and Philippe, 2017; Zeeden 
et al., 2018).  

This study adopted the method described by Combès 
and Philippe (2017) to build the relationship between the 

characteristic dose μi, the annual dose rate �̅�𝑖  , and the 
corresponding burial age ai for the ith sample by taking 
into account both systematic and random sources of er-
rors using the following Gaussian error model: 

)( dcdiiii da εεµ ++×=  (3.2) 

where εdi and εdc are the random measurement error for 
the ith sample and the systematic error shared by all sam-
ples from the sequence, respectively. The systematic 
error, which represents the error in the calibration of the 
measurement device (assuming that the measurements are 
made in the same luminescence laboratory), affects all 
estimates in the same way. The noise terms εdi and εdc are 
assumed to follow Gaussian distributions, namely,  
εdi ~ N(0, σ2 

di), and εdc ~ N(0, σ2 
dc), respectively. Therefore, 

the characteristic dose μi in the likelihoods is re-
parameterized using a combination of burial age a and the 
dose rate data (i.e., the annual dose rate, associated ran-
dom and systematic errors) according to Eq. 3.2 and can 
be treated as an intermediate stochastic node.  

For parameters pi and σi of the ith sample (i=1, 2, 
3, ..., N), the priors were set equal to p and σ , respective-
ly. For parameter ai, a Uniform distribution for which the 
lower and upper bounds were set equal to amini and amaxi 
was used (the same as Section 3 – MCMC sampling from 
statistical age models for indi-vidual samples). In addi-
tion, a constraint on vector [a1, a2, a3, ..., aN] such that 
a1<a2<a3<...<aN (i.e., wherein ages are sorted in ascend-
ing order) was imposed to allow stratigraphic information 
to be incorporated during the MCMC sampling process.  

Stan (programming language) implementation for 
MCMC sampling 

The objective being to obtain sampling distributions 
of parameters p(θ|D) based on the joint-likelihood p(D|θ) 
and priors p(θ) using MCMC sampling, a class of algo-
rithms that utilize Markov chains to allow for the approx-
imation of posterior distributions for parameters of inter-
est by utilizing the prior distributions and likelihood as 
inputs (Annis et al., 2017). This study adopted the recent-
ly developed software package Stan (Gelman et al., 2015) 
for this purpose. Although there are dozens of built-in 
probability distributions that can be used to sample stand-
ard distributions (such as the Normal distribution, the 
Exponential distribution, etc.), users will occasionally 
require “non-standard” distributions (i.e., the joint-
likelihoods for the CAM, MAM3, and MXAM3 used in 
this study) that may not yet be defined. Annis et al. 
(2017) gave a detailed tutorial on the implementation of 
MCMC sampling using user-defined distributions within 
the Stan programming language. Once the user-supplied 
function is defined, it can be called upon as a built-in 
distribution. This section provides a simple description of 
the numeric programs used to conduct MCMC sampling 
from statistical age models applying De datasets from 
both individual and multiple samples using the Stan soft-
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ware package. The relevant code and numeric scripts are 
freely downloadable from 
https://github.com/pengjunUCAS/mcmcSAM. 

Individual samples 
The input, likelihood, transformation, and distribution 

used to implement MCMC sampling for individual sam-
ples using the CAM and the MAM3 are illustrated in Fig. 1. 
The MXAM3 can be simulated in the same manner as the 
MAM3 by changing the likelihood correspondingly. In 
Fig. 1, zj and σzj denote the De and associated absolute 
error for the jth aliquot (grain). These statements can 
easily be modified to accommodate unlogged versions of 
the CAM, MAM3, and MXAM3. In Stan, variable defini-
tions, distribution specifications, and program statements 
are placed within code blocks (Annis et al., 2017). 
Script ”SAM0.stan” was employed to place all code 
blocks used to implement the sampling process. The R 
package “rstan” (an R interface for Stan) (Stan Develop-
ment Team, 2018) was used to execute the script using a 
wrapper function mcmcSAM() available in the 
file ”SAM.R”. Once the sampling process is terminated, 
the resultant MCMC convergence diagnostics are auto-
matically stored in the file ”mcmcSAM.pdf”, and the 
posterior samples are stored in the 
file ”mcmcSAM.csv”. Both files are available from the 
current R working directory. Please refer to the 
file ”SAM.R” for more detail on arguments and default 
settings used in function mcmcSAM(). 

Multiple samples with order constraints 
Samples from the same sequence may substantially 

vary in De distributions due to differences in provenance, 
depositional environment, microdosimetry, etc. There is 
no generally applicable statistical age model that can be 
used to analyze all De distribution types. If we conceptu-
alize three samples (S1, S2, and S3) from the same strati-

graphic sequence with their sample depths in ascending 
order, and we assume that these samples exhibit signifi-
cantly different De distribution characteristics for which 
the most suitable models for these samples would be the 
MAM3, CAM, and MXAM3, respectively, then the state-
ments used to conduct MCMC sampling on these samples 
applying a combination of different age models in log-
scale can be summarized as shown in Fig. 2. zij and σzij 
denote the De and the associated absolute standard error 
for the jth aliquot (grain) from the ith sample. yij and xij 
denote the logged De and corresponding RSE for the jth 
aliquot (grain) from the ith sample. n1, n2, and n3 denote 
the numbers of aliquots (grains) for the three samples. 
p(D|θ) is calculated as the product of joint likelihoods for 
samples S1, S2, and S3 that are fitted using the MAM3, 
CAM, and MXAM3, respectively. Note that in this study 
only three samples are used for illustrative purposes, 
while in practice many samples fitted using various com-
binations of the three different age models can be simul-
taneously analyzed in a manner similar to that demon-
strated in Fig. 2. This allows the programs to have a de-
gree of flexibility when De distributions from the same 
sequence need to be treated differently. Two scripts 
(i.e., ”SAMseq0.stan” and ”SAMseq1.stan”) 
were used to conduct the sampling process without and 

 
Fig. 2. Statements used for conducting MCMC simulation simultane-
ously according to different age models (log-scale) using De sets from 
three samples whose ages were constrained such that a1<a2<a3. The 
three samples were analyzed using the MAM3, CAM, and MXAM3, 
respectively. The protocol can be easily adapted for MCMC sampling 
without order constrains for burial ages. 

 

 
Fig. 1. Statements used to conduct MCMC sampling according to the 
CAM and the MAM3 (log-scale) using De sets from individual samples. 
The MXAM3 can be applied in a similar manner to the MAM3 by chang-
ing the likelihood function. 

 

https://github.com/pengjunUCAS/mcmcSAM
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with order constraints, respectively. A wrapper function 
mcmcSAMseq()that is available in file ”SAMseq.R” 
was used to call these scripts. The resultant MCMC con-
vergence diagnostics are automatically stored in 
file ”mcmcSAMseq.pdf”, and the posterior samples 
are stored in file ”mcmcSAMseq.csv”. 

4. APPLICATIONS AND RESULTS 

Measured De sets  
First, the validity of the MCMC sampling protocol (as 

demonstrated in Fig. 1) used to analyze De sets from 
individual samples was checked using measured multi-
grain De distributions (Fig. 3) of four aeolian samples 
(i.e., GL2-1 to GL2-4) from Gulang County at the south-
ern margin of the Tengger Desert, China (Peng et al., 
2016b). The De distributions were obtained using the 
single aliquot regenerative-dose (SAR) protocol (Gal-
braith et al., 1999; Murray and Wintle, 2000). When 

applying the MAM3 and MXAM3, an additional uncer-
tainty (i.e., σb) of 10% was added in the quadrature to the 
RSEs of the measured De values to account for unrecog-
nized measurement errors. In this study (unless stated 
otherwise), three parallel Markov chains (the number of 
iterations for each chain was set equal to 10000) were 
simulated during the MCMC sampling process for the 
individual samples, and four parallel Markov chains (the 
number of iterations for each chain was set equal to 6000) 
were simulated during the MCMC sampling process for 
the multiple samples. The lower and upper bounds for the 
priors of ages were set equal to amin(amini)=1 ka and 
amax(amaxi)=100 ka, respectively. The characteristic dose 
(i.e., μ) and age (i.e., a) of the CAM, MAM3, and 
MXAM3 obtained using MLE and MCMC were then 
compared and the results summarized in Table 1. The 
estimates obtained between the two different methods 
were consistent within errors, suggesting that estimates 
derived from MCMC can be used as an informative com-
parison for those estimated by MLE.   

 
Fig. 3. Measured multi-grain De distributions for four aeolian samples from Gulang County at the southern margin of the Tengger Desert, China 
(Peng et al., 2016b). N denotes the number of measured aliquots. Note that in Peng et al. (2016b) an additional uncertainty of σb=5% was added in 
the quadrature to the RSEs of the measured De values to account for sources of errors that were not considered in the measurements. However, no 
additional uncertainty was added to the De distributions shown here. 
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These four samples were also analyzed simultaneous-
ly using the MCMC sampling protocol (as demonstrated 
in Fig. 2) for multiple samples. De values of these sam-
ples fell within reasonably narrow ranges and displayed 
homogeneous distributions (Fig. 3). Accordingly, the 
CAM was applied to determine the burial dose. Samples 
GL2-1, GL2-2, GL2-3, and GL2-4 were collected from 
the same section in ascending order depths. Consequent-
ly, their burial ages were also expected to be in ascending 
order. The MCMC sampling protocol was applied to 
these samples with order constraints (results shown in 
Table 2). The systematic error representing the error in 
the calibration of the dose rate measurement device 
shared by all samples was assumed to be σdc=0.1. The 
posterior distributions of burial age are shown in Fig. 4. 
Results obtained without order constraints were also 
provided for comparison. These results suggested that 
burial ages would be internally consistent with the stratig-
raphy if order constraints were imposed during the 
MCMC sampling process. Moreover, the posterior stand-
ard deviations of burial ages would be significantly re-
duced when using stratigraphic constraints, implying that 
the precision of burial ages improved. Finally, a compari-
son between Table 1 and Table 2 for CAM results 
demonstrated that burial dose and ages (and their posteri-
or standard deviations) obtained by MCMC sampling 
using both individual samples and multiple samples sim-
ultaneously without order constraints were indistinguish-
able from each other.  

Simulated De sets 
This section shows simulation results of a series of De 

distributions with known burial ages to further verify the 
performance of the MCMC sampling protocols. The first 
three samples (#1–#3) were assumed to be partially-
bleached, the next three samples (#4–#6) fully-bleached, 
and the last three samples (#7–#9) contain fully-bleached 
grains that have been subsequently mixed with younger, 
intrusive grains. These samples were assumed to be col-
lected from the same sedimentary sequence but at differ-
ent depths. Their “true” burial doses ranged from 18 to  
42 Gy with a step of 3 Gy, and their “true” burial ages 
ranged from 7 to 11 ka with a step of 0.5 ka. The “true” 
average dose rate can be obtained by dividing the “true” 
burial dose by the “true” burial age of a sample. The 
random error arising from dose rate measurement was 
assumed to be 7%, in order to simulate a realistic annual 
dose rate. Namely, the “true” dose rates are noised using 
a Normal distribution with a mean equivalent to the 
“true” average dose rate and a relative standard deviation 
(RSD) equal to 7%. The generated random dose rates 
were used as the measured dose rates when determining 
burial ages using MLE and MCMC. The systematic error 
representing the error in the calibration of the dose rate 
measurement device shared by all samples was assumed 
to be zero (i.e., σdc=0).  

Lognormal distributions were used to model the natu-
ral dispersion in dose distributions arising from dose rate 
variation with an RSD of 5% (i.e., σd=0.05). Measured De 

Table 1. Comparisons of burial dose and age estimated from MLE and MCMC for the various statistical age models using De sets from four meas-
ured aeolian samples. Quantities estimated using the MCMC sampling protocol shown in Fig. 1 are marked in bold. Quantities estimated using the 
MLE are inside parentheses. 

Sample Dose rate 
(Gy/ka) 

CAM MAM3 MXAM3 
μ (Gy) a (ka) μ (Gy) a (ka) μ (Gy) a (ka) 

GL2-1 3.26 ± 0.25 34.55 ± 0.91  
(34.51 ± 0.84) 

10.73 ± 0.89 
(10.58 ± 0.85) 

33.96 ± 1.17 
(32.79 ± 3.64) 

10.55 ± 0.89 
(10.05 ± 1.36) 

35.36 ± 1.41 
(35.98 ± 3.51) 

10.96 ± 0.97 
(11.04 ± 1.37) 

GL2-2 2.84 ± 0.21 32.70 ± 0.98  
(32.65 ± 0.91) 

11.64 ± 0.95 
(11.50 ± 0.91) 

30.40 ± 1.41 
(30.33 ± 1.67) 

10.83 ± 0.98 
(10.68 ± 0.98) 

35.53 ± 2.12 
(37.12 ± 2.31) 

12.66 ± 1.26 
(13.7 ± 1.26) 

GL2-3 3.23 ± 0.23 30.57 ± 1.05  
(30.55 ± 0.98) 

9.56 ± 0.77 
(9.46 ± 0.74) 

27.92 ± 1.55 
(26.03 ± 3.56) 

8.74 ± 0.80 
(8.06 ± 1.24) 

35.19 ± 2.03 
(36.61 ± 2.41) 

11.00 ± 1.01 
(11.33 ± 1.10) 

GL2-4 3.40 ± 0.24 32.23 ± 1.27  
(32.17 ± 1.18) 

9.58 ± 0.79 
(9.46 ± 0.75) 

30.09 ± 1.55  
(30.75 ± 1.04) 

8.94 ± 0.80 
(9.04 ± 0.71) 

37.77 ± 2.61 
(39.16 ± 2.46) 

11.22 ± 1.12  
(11.52 ± 1.09) 

 

 

Table 2. A summary of burial dose and age estimated from the CAM for De sets from four measured aeolian samples using the MCMC sampling 
protocol shown in Fig. 2 without and with order constraints. The systematic error for the dose rate measurement shared by all samples was set to 
σdc=0.1. 

Sample Dose rate 
(Gy/ka) 

MCMC (without constraints) MCMC (with constraints) 
μ (Gy) a (ka) μ (Gy) a (ka) 

GL2-1 3.26 ± 0.25 34.55 ± 0.91 10.75 ± 0.96 34.23 ± 0.86 9.72 ± 0.52 
GL2-2 2.84 ± 0.21 32.71 ± 1.00 11.68 ± 1.06 32.19 ± 0.92 10.28 ± 0.49 
GL2-3 3.23 ± 0.23 30.58 ± 1.04 9.59 ± 0.85 31.03 ± 1.00 10.59 ± 0.52 
GL2-4 3.40 ± 0.24 32.24 ± 1.29 9.60 ± 0.85 33.13 ± 1.26 11.13 ± 0.67 
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distributions were simulated according to the method 
described by Li et al. (2017), which involves simulating 
OSL intensities of the natural dose (Ln), a series of regen-
erative doses (Lx), and their corresponding test doses (Tn 
and Tx). Measured OSL sensitivity data taken from an 
empirical sample was used as the basis of the simulation. 
The OSL sensitivity (e.g., counts per unit of dose) of the 
different grains were randomly generated from a Gamma 
distribution fitted to the single-grain Tn datum from a 
sample taken from Lake Mungo, Australia (Fig. 5). Noise 
was added to each of the simulated OSL signal intensities 
based on the uncertainty arising from counting statistics 
and instrumental irreproducibility. It was assumed that 
both photon counts and dark counts were over-dispersed 
compared to a Poisson distribution (e.g., Li, 2007; 
Adamiec et al., 2012) and follow Negative Binomial 
distributions (e.g., Bluszcz et al., 2015). The variance to 
mean ratios for the photon counts and dark counts were 
set equal to 1.38 and 1.85, respectively. The dark count 
was set equal to 10 cts/0.2s. The instrumental reproduci-
bility was set as 2%. For the natural signals (Ln), an extra 
noise from “intrinsic OD” (e.g., σm=10%), which repre-
sents unrecognized measurement errors (e.g., OD ob-
served from a dose recovery experiment) (e.g., Thomsen 
et al., 2005; Jacobs et al., 2006; Guérin et al., 2017), was 
also added. De estimation was conducted using the R 
package “numOSL” (Peng et al., 2013; Peng and Li, 
2017). For each sample, 100 De values (and associated 
errors) were simulated. The nine simulated De distribu-
tions are shown in Fig. 6.  

The simulated De sets were analyzed individually us-
ing MLE, analyzed simultaneously using MCMC without 
order constraints, and analyzed simultaneously using 
MCMC with order constraints. The first, next, and last 

three samples were analyzed using the MAM3, CAM, and 
MXAM3, respectively. To facilitate the model in the 
analysis of the MAM3 and the MXAM3, a σb should be 
determined beforehand. The calculated OD values for 
samples #4–#6 can be regarded as appropriate σb values, 
given that these samples are “fully-bleached” simulated 
samples whose errors, arising from dose rate variation 
(i.e., σd) and unrecognized measurement uncertainty (i.e., 
σm), were the same as samples #1–#3 and samples #7–#9. 
The estimated OD values were 10.09±0.31%, 
10.48±0.33%, and 11.89±0.38%, respectively, for sam-
ples #4–#6. These values are broadly consistent with the 
expected value of �σ𝑑2 + σ𝑚2 = �(5%)2 + (10%)2 =
11.18%, confirming the validity of the simulation. Ac-
cordingly, a σb value of 11% was added to the RSEs of 
the De values when analyzing the MAM3 and the 
MXAM3. Analyzed results for each sample are summa-
rized in Table 3. The posterior distributions of burial 
ages are shown in Fig. 7 for results obtained by MCMC 
sampling with and without order constrains. Similar to 
Section 4 (Measured De sets), the burial doses and ages 
(and associated errors) obtained by MLE using individual 
samples and by MCMC using multiple samples simulta-
neously without order constraints were broadly consistent 
between one another. When order constraints were im-
posed during the MCMC sampling process, the precision 
of burial age improved for all samples, and the accuracy 
of burial age also increased for most samples (except for 
samples #4 and #9) (Fig. 7). The relative error (RE) of 

 
Fig. 4. Posterior distributions of burial ages obtained from the CAM for 
the four aeolian samples taken from the same sedimentary section 
obtained using the MCMC sampling protocol, as shown in Fig. 2. The 
blue-coloured density plots denote results obtained by constraining the 
burial ages in ascending order. The grey-coloured density plots denote 
results obtained by imposing no constraints on the order of burial ages. 
The value inside parentheses denotes the calculated RSD of burial age. 

 

 
Fig. 5. Distribution of OSL sensitivity for the 127 grains of a sample 
taken from Lake Mungo, Australia. The red line denotes the probability 
density curve obtained by fitting the OSL sensitivity data using a 
Gamma distribution. The fitted Gamma distribution has a shape pa-
rameter of α=0.565 and a rate parameter of β=0.191. Q[x%] denotes 
the x% sample quantile of OSL sensitivity. 
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Fig. 6. Simulated De distributions of nine samples from a sedimentary sequence. Each De set contains 100 De values (and associated standard 
errors). The shaded bars in each plot indicate the burial dose within 2σ error. The first three samples (#1–#3) are partially-bleached, the next three 
samples (#4–#6) are fully-bleached, and the last three samples (#7–#9) contain fully-bleached grains that have been subsequently mixed with 
younger, intrusive grains. The nine samples are assumed to be collected from the same section but at different depths, and their estimated burial 
dose and age are summarized in Fig. 7 and Table 3. 

 

Table 3. A summary of burial dose and age estimated from various statistical age models for nine simulated De sets taken from the same sedimen-
tary sequence. Results obtained using MLE and results obtained using the MCMC sampling protocol as shown in Fig. 2 without and with order con-
straints are presented. The systematic error on the dose rate measurement shared by all simulated samples was assumed to be σdc=0. 

Sample Model Age 
(ka) 

Burial dose  
(Gy) 

MLE MCMC (without constraints) MCMC (with constraints) 
μ (Gy) a (ka) μ (Gy) a (ka) μ (Gy) a (ka) 

#1 
MAM3 

7 18 18.35 ± 1.17 7.95 ± 0.75 17.85 ± 1.17 7.82 ± 0.76 16.58 ± 1.02 6.80 ± 0.44 
#2 7.5 21 21.16 ± 0.63 6.95 ± 0.53 20.96 ± 0.79 6.96 ± 0.57 21.17 ± 0.65 7.23 ± 0.40 
#3 8 24 24.47 ± 1.22 8.41 ± 0.72 23.64 ± 1.57 8.22 ± 0.81 23.25 ± 1.43 7.84 ± 0.42 
#4 

CAM 
8.5 27 26.91 ± 0.33 8.24 ± 0.59 26.92 ± 0.34 8.32 ± 0.61 26.93 ± 0.33 8.31 ± 0.39 

#5 9 30 30.40 ± 0.38 8.50 ± 0.60 30.41 ± 0.39 8.59 ± 0.63 30.44 ± 0.38 8.83 ± 0.42 
#6 9.5 33 32.79 ± 0.46 10.59 ± 0.76 32.81 ± 0.47 10.71 ± 0.79 32.66 ± 0.45 9.62 ± 0.42 
#7 

MXAM3 
10 36 35.77 ± 1.61 9.13 ± 0.76 36.43 ± 1.86 9.39 ± 0.84 37.18 ± 1.81 9.95 ± 0.45 

#8 10.5 39 39.26 ± 1.37 9.32 ± 0.73 39.70 ± 1.69 9.53 ± 0.79 40.62 ± 1.87 10.39 ± 0.54 
#9 11 42 43.65 ± 2.55 10.63 ± 0.97 44.61 ± 2.52 10.96 ± 1.00 45.43 ± 2.53 11.48 ± 0.85 
 

 



J. Peng 

157 

burial age of sample #4 increased slightly from 2.09% to 
2.20%, and that of sample #9 increased substantially from 
0.35% to 4.4%, if order constraints were imposed.  

MCMC convergence diagnostics 
Although a properly constructed MCMC protocol en-

ables one to draw samples successively from a conver-
gent Markov chain, deciding the point to terminate sam-
pling is sometimes difficult as well as the point to confi-
dently conclude when the algorithm has converged to the 
desired stationary distribution. One simple and direct way 
to inspect the convergence of a chain is to check the de-
gree of mixing of the chain by using a trace plot (Fig. 
8A). Values that get “stuck” within certain space intervals 
of variables indicate poor mixing. In contrast, a chain that 
shows good mixing properties will move freely along the 
feasible space of variables. Another simple method for 
assessing the convergence of a chain is to monitor the 
autocorrelations of generated variables (Fig. 8C). Varia-

bles generated using MCMC suffer from autocorrelations 
to some extent. To decrease the autocorrelations of a 
variable, simulated samplers are routinely trimmed using 
a “thinning” protocol after the “burn-in” (“warm-up”) 
procedure. If the autocorrelations of variables remain 
extremely high after applying a large “thinning” value, it 
may imply that the speed of the convergence is slow (i.e., 
poor mixing) and more samples are therefore needed so 
that a meaningful inference can be drawn. In this study 
(unless stated otherwise), the number of “warm-up” itera-
tions per chain was set equal to 2000, and the number of 
“thinning” iterations per chain was set equal to 1. 

The Gelman-Rubin convergence diagnostic (Gelman 
and Rubin, 1992) is one of the most widely used methods 
for monitoring the convergence of MCMC outputs. Sev-
eral parallel chains are simulated using various initial 
states when applying this method, and a shrink factor is 
used as a measurement of the difference between within-
chain and between-chain variance (which is similar to the 
analysis of variance). A shrink factor value equal to or 
less than 1 indicates adequate convergence, while a factor 
value significantly above 1 indicates a lack of conver-
gence. Results from Gelman-Rubin convergence diagnos-
tics for posterior samples of CAM burial ages from sam-
ple GL2-1 is shown in Fig. 8D. It can be clearly observed 
that the simulations stabilized and were very close to  
1 after approximately 3000 iterations. A summary of 
Gelman-Rubin convergence diagnostics for sequences of 
measured and simulated samples obtained using the 
MCMC sampling protocol of Fig. 2 with order con-
straints is presented in Table 4.  

5. DISCUSSION  

This study adopted an MCMC method to obtain sam-
pling distributions on parameters of interest in statistical 
age models, including the MAM3, CAM, and MXAM3, 
using De distributions from individual samples and multi-
ple samples with order constraints. It demonstrated that 
the estimates obtained by MLE and MCMC from meas-
ured samples were consistent within errors for various 
age models (Table 1). In addition, the burial doses and 
ages obtained by MLE using individual samples and by 
MCMC using multiple samples simultaneously without 
order constraints were also broadly consistent between 
one another (Tables 1–3). These results are encouraging, 
indicating that the MCMC method potentially provides 
an alternative perspective for which to analyze statistical 
age models, and the reliability of parameters of interest 
can be assessed by comparing the results between the two 
independent methods (Peng et al., 2016a). 

 
Fig. 7. Posterior distributions of burial ages of the nine simulated 
samples from a sedimentary section obtained using the MCMC sam-
pling protocol, as shown in Fig. 2. Samples #1–#3, #4–#6, and #7–#9 
were analyzed using the MAM3, CAM, and MXAM3, respectively. The 
blue-coloured density plots are results obtained by constraining burial 
ages in ascending order. The grey-coloured density plots are results 
obtained by imposing no constraints on the order of burial ages. The 
first and second values inside parentheses denote the calculated RSD 
and RE of the burial age, respectively. 
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For all MCMC simulations, initial states did not need 
to be specified and were generated automatically using 
random number generators, suggesting that the MCMC 
sampling method employed in this study was not sensi-
tive to the choice of the initial state, and that the algo-
rithm itself was free from the influence of local modes 

and was able to converge to the desired distribution with 
a finite number of iterations (Fig. 8 and Table 4). This 
has a clear advantage over MLE, whereby the latter may 
result in very different estimates when various starting 
values are tried, especially for complex age models such 
as the MAM3, and the MXAM3 (Peng et al., 2013). How-

 
Fig. 8. Convergence diagnostics for posterior samples of the CAM burial age from sample GL2-1. The plots were automatically generated using 
function mcmcSAM(). (A) denotes the trace plot; (B) denotes the density plot; (C) denotes the autocorrelations plot, and (D) denotes the Gelman-
Rubin convergence diagnostic plot generated using three parallel Markov chains. 

 

Table 4. A summary of Gelman-Rubin convergence diagnostics for measured and simulated samples obtained using the MCMC sampling protocol, 
as shown in Fig. 2 with order constraints. n_eff is the effective sample size, while Rhat (i.e., the shrink factor) is a statistic measure of the ratio of the 
average variance of samples within each chain to the variance of the pooled samples across chains. If all chains are at equilibrium, the Rhat will be 1. 
If these chains have not converged to a common distribution, the Rhat statistic will be greater than 1. 

Sample μ a Sample μ a 
n_eff Rhat n_eff Rhat n_eff Rhat n_eff Rhat 

GL2-1 16000 0.9998 5541.74 1.0002 #1 13865.37 1.0001 9987.93 1.0000 
GL2-2 16000 0.9999 8220.18 1.0003 #2 16000 1.0001 11473.55 1.0000 
GL2-3 16000 0.9997 7595.60 1.0002 #3 9405.95 1.0004 12466.84 1.0003 
GL2-4 16000 0.9998 8864.01 1.0003 #4 16000 1.0003 13161.07 0.9999 
     #5 16000 0.9999 12830.44 0.9999 
     #6 16000 0.9999 14048.98 0.9998 
     #7 16000 0.9999 13073.69 0.9998 
     #8 7780.82 1.0003 12665.56 1.0001 
     #9 16000 0.9999 16000 0.9999 
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ever, a major drawback of the MCMC method compared 
to MLE is that a large number of iterations (say, in the 
tens of thousands) are required in order to explore the 
entire range of the target distribution, and the process will 
increasingly be time-consuming given the increase in the 
number of observations or the complexity of the model 
under consideration.  

When applying the MCMC sampling method to mul-
tiple samples with stratigraphic constraints using statisti-
cal age models, samples are not analyzed on a standalone 
basis; rather, they are combined simultaneously in a sin-
gle model implementation so that between-sample age-
depth relationships can also be included. This shows that 
the burial age of measured samples was internally con-
sistent with the stratigraphy, and the posterior standard 
deviations of burial ages significantly decreased (Fig. 4). 
Using simulated De sets with known burial ages demon-
strate that the MCMC sampling method can not only 
increase the precision but also may improve the accuracy 
of age estimates (Fig. 7). These results illustrate the bene-
fit of including stratigraphic constraints when available 
during the analysis of statistical age models using De sets 
from multiple samples (e.g., Cunningham and Wallinga, 
2012; Combès and Philippe, 2017). However, it should 
be noted that incorporating age-depth relationship be-
tween samples into the Bayesian model may also have the 
risk of decreasing the accuracy of age estimates for cer-
tain samples within the sequence, as observed in Fig. 7. 

The sequence of De sets simulated in Section 4 (Simu-
lated De sets) was determined to be free of systematic 
error arising from dose rate measurements. However, the 
systematic error term that induces dependences between 
observations and the associated age-depth model should 
always be taken into account when analyzing measured 
samples (e.g., Rhodes et al., 2003; Combès and Philippe, 
2017; Zeeden et al., 2018), although in most cases this 
error term remains unresolved and subject to guesswork. 
For example, the systematic error on the dose rate meas-
urement shared by all samples was set to σdc=0.1 for 
measured samples in this study. The quality of estimates 
for burial ages may potentially be improved by introduc-
ing external (independent) dates, allowing for the correc-
tion of systematic components of the error (e.g., Rhodes 
et al., 2003). This function may be made available in 
future releases of relevant software programs.  

6. CONCLUSIONS 

This study employed an MCMC sampling method for 
the statistical analysis of De datasets, using statistical age 
models, including the CAM, MAM3, and MXAM3. The 
method was tested using measured, and simulated De sets, 
and consistent results in agreement with expected values 
were obtained. The development of numerical programs 
provides a statistical toolbox for the calculation of OSL 
ages using MCMC sampling for both individual samples 
and multiple samples with (or without) order constraints 

by taking into account systematic and individual errors. 
The MCMC method employed in this study can be used 
in addition to other Bayesian models in tackling lumines-
cence-related chronological data and can be flexibly 
adapted to compute OSL ages of both well- and poorly-
bleached sedimentary samples. 
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